Synthesis and Structure of an Organotitanoxane Containing a Tetrahedral Ti₄O₆ Cage, $[(\eta^5-C_5Me_5)Ti]_4O_6$

L. M. Babcock,^a V. W. Day,^{b*} and W. G. Klemperer^{a*}

^a Department of Chemistry and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, U.S.A.

^b Crystalytics Company, Lincoln, Nebraska 68501, U.S.A.

Base hydrolysis of (η^5 -C₅Me₅)TiCl₃ in toluene yields [(η^5 -C₅Me₅)Ti]₄O₆ which, according to X-ray structural analysis, has an adamantane-like cage structure with a tetrahedral Ti^V₄O₆ core.

The family of polyhedral organosiloxanes $(RSiO_{3/2})_n$ is well established,¹ but no corresponding organotitanoxane cage compounds are known. Since chain and ring organotitanoxanes with Ti^{IV}₂O (ref. 2), Ti^{IV}₃O₃ (ref. 3), and Ti^{IV}₄O₄ (ref. 4) frameworks as well as mixed-valence cages L₆Ti₆O_{8-x}Cl_x (ref. 5) (L = η^{5} -C₅H₅, η^{5} -MeC₅H₄; x = 0,2,4) are known to be stable, organotitanoxane cages with Ti^{IV}_nO_{3n/2} frameworks are expected to be stable species. We report here the synthesis and structure of the first such species, $[(\eta^{5}$ -C₅Me₅)Ti]₄O₆.

Reaction of $(\eta^5-C_5Me_5)TiCl_3^6$ with excess of 1.5 M aqueous NH₄OH in toluene for three days at ambient temperature followed by filtration to remove NH₄Cl, drying over Na₂SO₄, elution through a basic alumina chromatography column, and removal of solvent under reduced pressure yields yellow, crystalline [($\eta^5-C_5Me_5$)Ti]₄O₆ in 65% yield.⁺ The course of

^{† [(}η⁵-C₅Me₅)Ti]₄O₆: satisfactory elemental analyses (C,H,Ti) were obtained; ¹H n.m.r. (CDCl₃, 300 MHz, rel. to Me₄Si) δ 1.973(s); ¹³C{¹H} n.m.r. (CDCl₃, 75.48 MHz, rel. to Me₄Si) δ 11.37 (s, C₅Me₅), 121.47 (s, C₅Me₅); ¹⁷O n.m.r. (0.02 M CHCl₃, 22 °C, 33.92 MHz, rel. to tap water) δ 645 p.p.m. (s, 42 Hz full width at half maximum); i.r. (mineral oil) v(Ti-O-Ti) 780 cm⁻¹; *m/z* (field desorption) 828.

 \bigcirc = Ti; O = O; O = C; o = H Figure 1. Perspective drawing of the $[(\eta^5-C_5Me_5)Ti]_4O_6$ molecule.

 $(\eta^{5}-C_{5}Me_{5})TiCl_{3}$ hydrolysis is very dependent upon reaction conditions.⁷ Hydrolysis in refluxing acetone, for example, yields $[(\eta^{5}-C_{5}Me_{5})TiCl(\mu-O)]_{3}$,‡ the chloro analogue of a known compound, $[(\eta^{5}-C_{5}Me_{5})TiCH_{3}(\mu-O)]_{3}$.^{3a}

X-Ray structural analysis of crystalline $[(\eta^5-C_5Me_5)Ti]_4O_6$, obtained from toluene solution, revealed the presence of an adamantane-like cage molecule with a tetrahedral Ti₄O₆ core (see Figure 1).§ The Ti₄O₆ cage approximates quite closely its maximum possible point group symmetry of T_d . The Cg–Ti,¶ Cg–O, and Ti–O distances average** 1.978 (—,4,5,4), 2.018 (—,2,6,6), and 1.837 (3,4,12,12) Å, respectively; the Ti–Cg– Ti, Ti–O–Ti, and O–Ti–O angles average 109.5(—,1,3,6), 123.0(1,2,4,6), and 101.9(1,2,6,12)°, respectively. The two

‡ [(η⁵-C₅Me₅)TiCl(μ-O)]₃: satisfactory elemental analyses (C,H,Ti,Cl); ¹H n.m.r. (CDCl₃, 300 MHz, rel. to Me₄Si) δ 2.122 (s, 30H), 2.098 (s, 15H); ¹³C {¹H} n.m.r. (CDCl₃, 75.48 MHz, rel. to Me₄Si) δ 12.11 (s, 5C, C₅Me₅), 12.40 (s, 10C, C₅Me₅), 128.22 (s, 10C, C_5 Me₅), 128.90 (s, 5C, C₅Me₅); i.r. (mineral oil) v(Ti-O-Ti) 780 cm⁻¹; m/z (field desorption) 704.

§ Crystal data: $C_{40}H_{60}O_6Ti_4$, M = 828.5, triclinic, space group $P\overline{1}-C_i$, a = 11.355(3), b = 12.347(3), c = 18.694(4) Å, $\alpha = 89.91(2), \beta =$ 96.87(2), $\gamma = 123.36(2)^{\circ}$; $U = 2167(1) \text{ Å}^3$; Z = 2; $D_c = 1.27 \text{ g/cm}^3$; μ (Mo- $K_{\overline{\alpha}}$)_{calc.} = 0.74 mm⁻¹; 9926 unique data having 2 θ (Mo- $K_{\overline{\alpha}}$) <55° were collected on a Nicolet PI autodiffractometer using graphite monochromated Mo- $K_{\bar{\alpha}}$ radiation ($\lambda = 0.71073$ Å) and full (1.2° wide) ω scans. The intensity data were corrected empirically for variable absorption effects and the structure was solved using (SHELXTL) 'direct methods' techniques. The resulting structural parameters have been refined using counter-weighted cascade block-diagonal leastsquares techniques to R = 0.051 and $R_w = 0.069$ for 7004 independent absorption-corrected reflections having $I > 3\sigma(I)$. These refinement cycles employed anisotropic thermal parameters for all non-hydrogen atoms and isotropic thermal parameters for the hydrogen atoms of the methyl groups which were refined as rigid rotors with idealized sp³ hybridization and a C-H bond length of 0.96 Å.

Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

 $\$ Cg is used to represent the centre-of-gravity for the Ti₄O₆ cage; Cp(1)—Cp(4) represents the centre-of-gravity for the five-membered rings of the four independent C₅Me₅ ligands.

** The first number in parentheses following an averaged value of a bond length or angle is the root-mean-square estimated standard deviation of an individual datum. The second and third numbers are the average and maximum deviations from the averaged value, respectively. The fourth number represents the number of individual measurements which are included in the averaged value. types of O–Cg–O angles average 90.0(-,1,3,12) and $179.9(-,0,1,3)^\circ$, respectively. Each of the six-membered $(-Ti–O-)_3$ rings in the cage exists in a chair configuration.

The co-ordination geometry at each Ti^{IV} atom is pseudotetrahedral with three sites being occupied by bridging oxygen atoms and the remaining site by a π -bonded η^5 -C₅Me₅ ligand; Ti-C, ring C-C, and ring-to-methyl C-C distances average 2.378(5,10,25,20), 1.392(8,23,72,20), and 1.504(10,12,48,20) Å, respectively. The Ti-Cp distances and Cp-Ti-O angles average 2.062(-,5,10,4) Å and 116.2(-,7,12,12)°, respectively. Thus the metrical parameters for the Ti^{IV} co-ordination sphere in [(η^5 -C₅Me₅)Ti]₄O₆ are similar to those previously observed for Ti in chain and ring organotitanoxanes.²⁻⁴

We acknowledge the National Science Foundation for partial support of this work. L. M. B. was supported by the U.S. Department of Energy, Division of Materials Science, under Contract DE-AC02-76ER01198. Field desorption mass spectra were obtained in the Mass Spectrometry Laboratory, School of Chemical Sciences, University of Illinois, supported in part by a grant from the National Institute of General Medical Sciences (GM27029).

Received, 19th January 1987; Com. 064

References

- M. G. Voronkov and V. I. Lavrent'yev, *Top. Curr. Chem.*, 1982, 102, 199; V. W. Day, W. G. Klemperer, V. V. Mainz, and D. M. Millar, *J. Am. Chem. Soc.*, 1985, 107, 8262.
- 2 U. Thewalt and B. Kebbel, J. Organomet. Chem., 1978, 150, 59;
 U. Thewalt and D. Schomburg, *ibid.*, 1977, 127, 169; R. D. Gorsich, J. Am. Chem. Soc., 1960, 82, 4211; P. Corradini and G. Allegra, *ibid.*, 1959, 81, 5510.
- 3 (a) S. G. Blanco, M. P. G. Sal, S. M. Carreras, M. Mena, P. Royo, and R. Serrano, J. Chem. Soc., Chem. Commun., 1986, 1572;
 (b) H. Köpf, S. Grabowski, and R. Voigtländer, J. Organomet. Chem., 1981, 216, 185.
- 4 J. L. Petersen, *Inorg. Chem.*, 1980, **19**, 181; A. C. Skapski and P. G. H. Troughton, *Acta Crystallogr.*, *Sect. B*, 1970, **26**, 716.
- A. Roth, C. Floriani, A. Chiesi-Villa, and C. Guastini, J. Am. Chem. Soc., 1986, 108, 6832; F. Bottomley, D. F. Drummond, G. O. Egharevba, and P. S. White, Organometallics, 1986, 5, 1620; J. C. Huffman, J. G. Stone, W. C. Krusell, and K. G. Caulton, J. Am. Chem. Soc., 1977, 99, 5829.
- 6 J. Blenkers, H. J. de Liefde Meijer, and J. H. Teuben, J. Organomet. Chem., 1981, 218, 383.
- 7 H. Röhl, E. Lange, T. Gössl, and G. Roth, Angew. Chem., Int. Ed. Engl., 1962, 1, 117; H. Röhl, E. Lange, and W. Eversmann, Ger. Pat. 1 153 366, 1963.